某测试模拟器性能优化-使用PyPy提升Python程序性能

PyPy简单介绍

PyPy is a fast, compliant alternative implementation of the Python language (2.7.13 and 3.5.3). It has several advantages and distinct features:

  • Speed: thanks to its Just-in-Time compiler, Python programs often run faster on PyPy. (What is a JIT compiler?)
  • “If you want your code to run faster, you should probably just use PyPy.” — Guido van Rossum (creator of Python)
  • Memory usage: memory-hungry Python programs (several hundreds of MBs or more) might end up taking less space than they do in CPython.
  • Compatibility: PyPy is highly compatible with existing python code. It supports cffi and can run popular python libraries like twisted and django.
  • Stackless: PyPy comes by default with support for stackless mode, providing micro-threads for massive concurrency.

从PyPy官方的介绍中可以看出它是Python语言的替代实现,比CPython更快,因为它是基于JIT技术的,并且使用更少的内存,同时还几乎提供了所有的内置模块。

既然这么好,那我们自然会想到用PyPy来对重构过的代码再做一次性能提升的尝试。

安装PyPy

PyPy可以直接从官网上下载 pypy.org/download.html

提升性能,肯定要使用JIT版本,同时为了避免某些动态库无法找到的问题,推荐大家使用类似于pypy-5.10.0-linux_x86_64-portable.tar.bz2这样的portable版本,直接解压就可以使用。

PyPy贴心地内置了VirtualEnv工具,你可以用它直接生成专用的PyPy工作环境。

然后,你可能需要先使用CPython的pip命令导出项目pip安装的包到requirements.txt

pip freeze > requirements.txt

然后到PyPy工作环境的bin目录下,使用requirements.txt为PyPy安装pip包

./pip install -r requirements.txt

执行你的程序

使用PyPy执行你的程序吧

./pypy log_generator.py

资料上说,对于计算密集型的程序,PyPy一般能够将性能提升一个数量级。而我们的测试模拟器,其实是IO密集型的程序,实测下来,性能大致提升了2倍以上。

总结

看到这里,相信您已经了解如何使用PyPy提升Python程序性能了。

当然,我们的模拟器也顺利地能够支持模拟100w节点在线了~

相关新闻

发表评论

电子邮件地址不会被公开。 必填项已用*标注

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:ijumper@163.com

工作时间:周一至周五,9:30-18:30,节假日休息